Algebraic geometry of Bayesian networks
نویسندگان
چکیده
We study the algebraic varieties defined by the conditional independence statements of Bayesian networks. A complete algebraic classification is given for Bayesian networks on at most five random variables. Hidden variables are related to the geometry of higher secant varieties.
منابع مشابه
Algebraic Geometry of Gaussian Bayesian Networks
Conditional independence models in the Gaussian case are algebraic varieties in the cone of positive definite covariance matrices. We study these varieties in the case of Bayesian networks, with a view towards generalizing the recursive factorization theorem to situations with hidden variables. In the case when the underlying graph is a tree, we show that the vanishing ideal of the model is gen...
متن کاملAlgebraic Statistics in Model Selection
We develop the necessary theory in computational algebraic geometry to place Bayesian networks into the realm of algebraic statistics. We present an algebra–statistics dictionary focused on statistical modeling. In particular, we link the notion of effective dimension of a Bayesian network with the notion of algebraic dimension of a variety. We also obtain the independence and non–independence ...
متن کاملThe geometry of causal probability trees that are algebraically constrained
In this chapter we show how algebraic geometry can be used to define and then analyse the properties of certain important classes of discrete probability models described through probability trees. Our aim is to show how much wider classes of discrete statistical models than have been considered previously have a useful algebraic formulation and unlike its competitors this class is closed under...
متن کاملAlgebraic Causality: Bayes Nets and Beyond
The relationship between algebraic geometry and the inferential framework of the Bayesian Networks with hidden variables has now been fruitfully explored and exploited by a number of authors. More recently the algebraic formulation of Causal Bayesian Networks has also been investigated in this context. After reviewing these newer relationships, we proceed to demonstrate that many of the ideas e...
متن کاملAn Algebraic Characterization of Equivalent Bayesian Networks
In this paper, we propose an algebraic characterization for equivalent classes of Bayesian networks. Unlike the other characterizations, which are based on the graphical structure of Bayesian networks, our algebraic characterization is derived from the intrinsic algebraic structure of Bayesian networks, i.e., joint probability distribution factorization. The new proposed algebraic characterizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 39 شماره
صفحات -
تاریخ انتشار 2005